Đề cương ôn thi Toán Lớp 8 (Có đáp án)
Bài 1:
a. Cho hình thoi ABCD, kỴ đường cao AH, AK. CMR: AH = AK
b. Hình bình hành ABCD có hai đường cao AH, AK bằng nhau. CMR: ABCD là
hình thoi
Bài 2: Hình thoi ABCD có góc
là tam giác gì? Vì sao?
Bài 3: Cho hình thoi ABCD, O là giao điểm của hai đường chéo. Gọi E, F, G, H
theo thứ tự là chân các đường góc kẻ từ O đến AB, BC, CD, DA. Tứ giác EFGH là
hình gì? Vì sao?
Bạn đang xem tài liệu "Đề cương ôn thi Toán Lớp 8 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- de_cuong_on_thi_toan_lop_8_co_dap_an.pdf
Nội dung text: Đề cương ôn thi Toán Lớp 8 (Có đáp án)
- ĐỀ CƯƠNG ÔN THI TOÁN 8 Hình Học Đề số 1 Bài 1: a. Cho hình thoi ABCD, kỴ đường cao AH, AK. CMR: AH = AK b. Hình bình hành ABCD có hai đường cao AH, AK bằng nhau. CMR: ABCD là hình thoi A Giải: a. Xét AHB và AKD có: AB = AD (vì ABCD là hình thoi) Góc <B = <D (t/c hình thoi) B D vuông AHB = AKD (cạnh huyền góc nhọn) H K AH = AK (2 cạnh tương ứng) C b. Xét tam giác vuông AHB và AKD có: AH = AK (gt) Góc <B = <D (t/c hình bình hành) tam giác AHB AKD (cạnh góc vuông- góc nhọn kÌ) Vậy AB = AD (2 cạnh tương ứng) Hình bình hành ABCD có 2 cạnh kÌ bằng nhau nên là hình thoi. Bài 2: Hình thoi ABCD có góc <A = 600. kẻ hai đường cao BE, BF. Tam giác BÌ là tam giác gì? Vì sao? B Giải: Xét AEB và CFB có: A C AB = CB (®/n hình thoi) Góc <A = <C (t/c hình thoi) E F AEB= CFB (cạnh huyền- góc nhọn) D BE = BF Vậy tam giác BEF cân
- 3600 1200 Lại có: góc <B = 1200 2 0 Mà góc <B 1 = <B2 = 30 0 <B3 = 60 Vậy tam giác BEF đều. Tiết 19: Bài 3: Cho hình thoi ABCD, O là giao điểm của hai đường chéo. Gọi E, F, G, H theo thứ tự là chân các đường góc kẻ từ O đến AB, BC, CD, DA. Tứ giác EFGH là hình gì? Vì sao? Giải: B Ta có; OF AB, OG CD E F Mà AB // CD (t/c hình thoi) E, O, G thẳng hàng. A C Chứng minh tương tự ta có 3 điểm F, O, H thẳng hàng. H G - Điểm O thuộc tia phân giác của góc B D nên cách đều 2 cạnh của góc do đó: OE = OF Tương tự ta cũng có: OF = OG, OG = OH Vậy tứ giác EFGH có hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường nên là hình chữ nhật. Bài 4: Cho hình thoi ABCD có góc <A = 600. Trên cạnh AD lấy điểm M, trên cạnh DC lấy điểm N sao cho AM = DN. Tam giác BMN là tam giác gì? vì sao? Giải: Ta có: Tam giác ABD cân tai A Và <A = 600 nên tam giác ABC là tam giác đều. AB = BD B 0 góc <ABD = <D1 = 60 (t/c hình thoi) Xét tam giác ABM và DBN có: A C AB = BD (chứng minh trên) N
- Góc <A = <D2 (chứng minh trên) M AM = DN (gt) D ABM = DBN (c.g.c) BM = BN, <B1 = <B3 0 Ta lại có: góc, <B1 + <B2 = 60 0 <B3 + <B2 = 60 Tam giác BMN cân có góc MBN = 600 nên là tam giác đều. Bài 5: Hình thoi ABCD có chu vi bằng 16 đường cao AH bằng 2cm. Tính các góc của hình thoi. Giải: Gọi M là trung điểm của AD, ta có: A HM = MA = MD = 2cm Theo đề bài ta có: AH = 2cm B D Do đó: tam giác AHM là tam giác đều Góc <MAH = 600 <D = 300 C Từ đó ta có: góc <B = <C = 1500 Tiết 20: Bài 6: Tứ giác ABCD có toạ độ các đỉnh như sau: A(0, 2); B(3, 0); C(0, - 2); D(- 3, 0) Tứ giác ABCD là hình gì? Tính chu vi của tứ giác đó. Giải: Tứ giác ABCD có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên là hình bình hành. Lại có hai đường chéo vuông góc với nhau nên là hình thoi. Cạnh của hình thoi AB = OA 2 OB 2 A AB = 22 32 4 9 13 Vậy chu vi của hình thoi: 4 13 - 3 D O B
- C Bài 7: Cho hình thoi ABCD, có AB = AC, kỴ AE BC, AF CD a. Chứng minh tam giác AEF là tam giác đều. b. Biết AB = 4cm. Tính độ dài các đường chéo của hình thoi. Giải: Tam giác ABC có AB = BC (®/n hình thoi) AB = AC (gt) Tam giác ABC đều góc <B = 600 A do đó: góc <D = 600 xét ABE và ADE có: AB = AD (®/n hình thoi) D B <D = <B (chứng minh trên) ABE ADE (cạnh huyền- góc nhọn) C AE = AF (2 cạnh tương ứng) Vậy tam giác AEF cân tại A. - Trong các tam giác đều ABC, AOC có AE và AF là các đường cao nên là phân giác của góc <BAC và <OAD do đó: góc <EAC = <FAC = 300 góc <EAF = 600 Tam giác cân AEF có góc <EAF = 600 nên là tam giác đều. Đề số 2 Bài 1: Cho tam giác ABC, điểm I nằm giữa B và C. Qua I vÊ đường thẳng song song với AB c¨t AC ở H. Qua I vÊ đường thẳng song song với AC c¨t AB ở K. a. Tứ giác AHIK là hình gì? b. Điểm I ở vị trí nào trên cạnh BC thì tứ giác AHIK là hình thoi. c. Tam giác ABC có điều kiện gì thì tứ giác AHIK là hình chữ nhật. Giải:
- a. Tứ giác AHIK có IH // AK, AH // KI A tứ giác AHIK là hình bình hành. K b. Hình bình hành AHIK là hình thoi AI là đường phân giác của góc A B C Vậy nếu I là giao điểm của tia phân giác góc A với cạnh BC thì AHIK là hình thoi. A c. Hình bình hàng AHIK là hình chữ nhật góc <A = 900 H Vậy nếu tam giác ABC vuông tại A thì K AHIK là hình chữ nhật. B C Bài 2: Hình chữ nhật ABCD có AB = 2AD. Gọi P, Q theo thứ tự là trung điểm của AB, CD. Gọi H là giao điểm của AQ và DP. Gọi K là giao điểm của CP và BQ. Chứng minh rằng PHQK là hình vuông. Giải: A P Q Tứ giác APCQ có AP // QC và AP = QC Nên tứ giác APCQ là hình bình hành H K (dấu hiệu nhận biết) AQ // PC (1) Chứng minh tương tự ta có: BQ // PD (2) D Q C Từ (1) và (2) Tứ giác PHQK là hình bình hành. Lại có tứ giác APQD là hình bình hành vì có AP // DQ , AP = DQ Hình bình hành APQD có góc <A = 900 là hình chữ nhật Hình chữ nhật APQD có AP = AD nên là hình vuông. góc <PHQ = 900 và PH = HQ Hình bình hành PHQK có góc <PHQ = 900 và PH = HQ nên là hình vuông. Tiết 22:
- Bài 3: Cho tam giác vuông cân tại A, trên cạnh BC lấy điểm H, G sao cho BH = HG = GC. Qua H và G kẻ các đường vuông góc với BC, chóng cắt AB, AC theo thứ tự ở E và F. Tứ giác EFGH là hình gì? Vì sao? Giải: A Tam giác AGC có góc <C = 450 Nên tam giác FGC vuông cân E F Do đó: GF = GC Chứng minh tương tự EH = HB Do BH = CG = HG nên EH = HG = GF B C Tứ giác EHGF có EH // FG (cùng vuông góc với BC) EH = FG (c/m trên) Tứ giác EHGF là hình bình hành Hình bình hành EHGF có góc <H = 900 là hình chữ nhật Lại có: EH = HG tứ giác EHGF là hình vuông. Bài 4: Cho hình vuông ABCD. Trên cạnh AD lấy điểm F, trên cạnh DC lấy điểm E sao cho AF = DE. Chứng minh rằng AE = BF và AE BF Giải: AF = DE (gt) A B ADE BAF (2 cạnh góc vuông) AE = BF (2 cạnh tương ứng) F Góc <A1 = <B1 (2 góc tương ứng) 0 Ta lại có: <A1 + <A2 = 90 0 Nên góc <B1 + <A2 = 90 D E C Gọi H là giao điểm của AE và BF Thì góc <H = 900 Vậy AE BF
- Tiết 23: Bài 5: Cho hình vuông ABCD, gọi E là một điểm nằm giữa C và D. Tia phân giác của góc DAE cắt CD ở F. KỴ FH AE (H AE ), FH cắt BC ở G. Tính số đo góc FAG. Giải: A B Xét tam giác AD F và AH F có: Góc <A1 = <A2 (gt) G AF cạnh chung AD F AH F (cạnh huyền góc nhọn) D C AD = AH (2 cạnh tương ứng) Ta lại có: AD = AB AB = AH Xét A BG và A HG có: AB = AH (c/m trên) AG là cạnh chung ABG AHG (cạnh huyền- cạnh góc vuông) góc <A3 = <A4 (2 góc tương ứng) 1 1 0 0 ta có: góc <FAG = <A2 + <A3 = DAH HAB .90 45 2 2 Bài 6: Cho hình vuông ABCD, điểm E thuộc cạnh CD, tia phân giác của góc ABE cắt AD ở K. CMR: AK + CE = BE A B Giải: Trên tia đối của CD lấy điểm M K sao cho CM = AK Ta có: D AK + CE = CM + CE = ME E C M Xét tam giác ABK và tam giác CBM có: AB = BC (gt) AK = CM (gt) ABC CBM (2 cạnh góc vuông) góc MK1 = <M, <B1 = <B4 Ta lại có: <B1 = <B2 <B2 = <B4
- Từ đó ta có: góc <EBM = <B3 + <B4 = <B3 + <B2 = <KBC Mà <KBC = <K1 (so le trong) Và <K1 = <M (c/m trên) Do đó: BE = MC + CE = AK + CE (®pcm) Đề số 3 Bài 1: Giải các phương trình sau: a. - 2x + 14 = 0 b. 0,25x + 1,5 = 0 4 5 1 c. 3 6 2 d. 3x + 1 = 7x + 11 e. 11 - 2x = x - 1 Giải: a. - 2x + 14 = 0 14 = 2x x = 7 1,5 b. 0,25x + 1,5 = 0 0,25x = - 1,5 x = x = - 6 0,25 4 5 1 4 1 5 4 8 8 3 c. x x x x . x = 1 3 6 2 3 2 6 3 6 6 4 d. 3x + 1 = 7x + 11 3x - 7x = - 11 - 1 - 4x = - 12 x = 3 e. 11 - 2x = x - 1 - 2x - x = - 1- 11 - 3x = - 12 x = 4 Bài 2: Chứng tỏ rằng các phương trình sau đây vô nghiệm. a. a(x + 1) = 3 + 2x b. 2(1 - 1,5x) + 3x = 0 c. x 1 Giải: a. a(x + 1) = 3 + 2x 2x + 2 = 2 + 2x 2x - 2x = 3 - 2 0x = 1 phương trình vô nghiệm
- b. 2(1 - 1,5x) + 3x = 0 2 - 3x + 3x = 0 0x = - 2 phương trình vô nghiệm c. x 1 VT của phương trình không âm , VP âm phương trình vô nghiệm Tiết 25: Bài 3: Tìm giá trị của x sao cho 2 biểu thức A và B cho sau đây có giá trị bằng nhau a. A = (x - 3)(x + 4) - 2(3x - 2); B = (x - 4)2 b. A = (x + 2)(x - 2) + 3x2; B = (2x + 1)2 + 2x c. A = (x - 1)(x2 + x + 1) - 2x; B = x(x - 1)(x + 1) d. A = (x + 1)3 - (x - 2)3; B = (3x - 1)(3x + 1) Giải: a. A = B (x - 3)(x + 4) - 2(3x - 2) = (x - 4)2 x2 + 4x - 3x - 12 - 6x + 4 = x2 - 8x + 16 3x = 24 x = 8 b. A = B (x + 2)(x - 2) + 3x2 = (2x + 1)2 + 2x x2 - 2x + 2x - 4 + 3x2 = 4x2 + 4x + 1 + 2x 6x = - 5 x = - 5 6 c. A = B (x - 1)(x2 + x + 1) - 2x = x(x - 1)(x + 1) x3 - 1 - 2x + x3 - x - x = 1 x = - 1 d. A = B (x + 1)3 - ( x - 2)3 = (3x - 1)(3x + 1) x3 + 3x2 + 3x + 1 - (x3 - 6x2 + 12x - 8) = 9x2 - 1 - 9x = - 10 x = 10 9 Bài 4: Giải các phương trình tích sau: a. (x - 1)(5x + 3) = (3x - 8)(x - 1) b. 3x(25x + 15) - 35(5x + 3) = 0 c. (2 - 3x)(x + 11) = (3x - 2)(2 - 5x) d. (2x2 + 1)(4x - 3) = (2x2 + 1)(x - 12)
- e. (2x + 1)2 + (2 - x)(2x - 1) = 0 f. (x + 2)(3 - 4x) = x2 + 4x + 4 Giải: a. (x - 1)(5x + 3) = (3x - 8)(x - 1) (x - 1)(5x + 3) - (3x - 8)(x - 1) = 0 (x - 1)(5x + 3 - 3x + 8) = 0 (x - 1)(2x + 11) = 0 x = 1 hoặc x = - 11 2 11 Vậy S = 1, 2 b. 3x(25x + 15) - 35(5x + 3) = 0 15x(5x + 3) - 35(5x + 3) = 0 (5x + 3)(15x - 35) = 0 x = - 3 hoặc x = 7 5 3 3 7 Vậy S = ; 5 3 c. (2 - 3x)(x + 11) = (3x - 2)(2 - 5x) (2 - 3x)(x + 11) + (2 - 3x)(2 - 5x) = 0 2 - 3x)(x + 11 + 2 - 5x) = 0 (2 - 3x)(- 4x + 13) = 0 x = 2 hoặc x = 13 3 4 2 13 Vậy S = ; 3 4 d. (2x2 + 1)(4x - 3) = (2x2 + 1)(x - 12) (2x2 + 1)(4x - 3) - (2x2 + 1)(x - 12) = 0 (2x2 + 1)(4x - 3 - x + 12) = 0 (2x2 + 1)(3x + 9) = 0 x = - 3 Vậy S = 3 e. (2x + 1)2 + (2 - x)(2x - 1) = 0 (2x - 1)(2x - 1 + 2 - x) = 0
- (2x - 1)(x + 1) = 0 x = 1 hoặc x = - 1 2 1 Vậy S = ; 1 2 f. (x + 2)(3 - 4x) = x2 + 4x + 4 (x + 2)(3 - 4x) - (x + 2)2 = 0 (x + 2)(3 - 4x - x - 2) = 0 (x + 2)(-5x + 1) = 0 x = - 2 hoặc x = 1 5 1 Vậy S = 2; 5 Bài 5: Cho phương trình (3x + 2k - 5)(x - 3k + 1) = 0 trong đó k là một số a. Tìm các giá trị cØa k sao cho một trong các nghiệm của phương trình là x = 1. b. Với mỗi giá trị của k tìm được ở câu a, hãy giải phương trình đã cho. Giải: a. Với x = 1 ta có phương trình (3 + 2k - 5)(1 - 3k + 1) = 0 (2k - 2) - 3k + 2) = 0 k = 1 hoặc k = 2 3 Vậy với k = 1 và k = 2 thị phương trình đã cho có một trong các nghiệm là x = 3 1. b. Với k = 1 ta có pt: (3x - 3)(x - 2) = 0 x = 1 hoặc x = 2 Với k = ta có pt: 11 11 3x . x 1 0 x = hoặc x = 1 3 9 Bài 6: Giải các phương trình có ẩn ở mẫu.
- 1 x 2x 3 a. 3 x 1 x 1 x 2 2 x 2 10 b. 1 2x 3 2x 3 5x 2 2x 1 x 2 x 3 c. 1 2 2x 2 1 x 5 2x x 1 x 1 x 2 1 3x d. 3 3x 1 9x 3 2x 1 5 x 1 e. x 1 x 1 1 2x 2 5 4 f. x 1 x3 1 x 2 x 1 Giải: a. §KX§: x - 1 1 x 3(x 1) 2x 3 x 1 x 1 1 - x + 3x + 3 = 2x + 3 0x = - 1 PT vô nghiệm hay S = b. §KX§: x = 3 2 (x 2)2 2x 3 x 2 10 2x 3 2x 3 x2 + 4x + 4 - 2x + 3 = x2 + 10 2x = 3 x = 3 (loại) 2 Vậy PT vô nghiệm c. §KX§: x 1 5x 2 _(2x 1)(1 x) 2(1 x _ 2(x 2 x 3) 2(1 x) 2(1 x) 5x - 2 + 2x - 2x2 - 1+ x = 2 - 2x - 2x2 - 2x + 6 12x = 11 x = 11 (thoả mãn ®kx®) 12
- 11 Vậy S = 12 5 2x x 1 x 1 x 2 1 3x 1 d. §KX§: x 3 3x 1 9x 3 3 (5 2x)(3x 1) 3(x 1)(x 1) (x 2)(1 3x) 3(3x 1) 3(3x 1) 15x - 5 - 6x2 + 2x + 3x2 + 3x - 3x - 3 = x - 3x2 +2 - 6x 10 5 22x = 10 x = 22 11 5 Vậy S = 11 2x 1 5 x 1 e. §KX§: x 1 x 1 x 1 (2x 1)(x 1) 5(x 1)(x 1) (x 1)(x 1) (x 1)(x 1) (2x + 1)(x + 1) = (5x - 5)(x - 1) 2x2 + 2x + x + 1 = 5x2 - 5x - 5x + 5 3x2 - x - 12x + 4 = 0 x(3x - 1)(x - 4) = 0 x = 1 (thoả mãn) ho¨c x = 4 (thoả mãn) 3 1 Vậy S = ;4 3 1 2x 2 5 4 f. §KX§: x 1 x 1 x3 1 x 2 x 1 x2 x 1 2x 2 5 4(x 1) x3 1 x3 1 x2 + x + 1 + 2x2 - 5 = 4x - 4 3x2 - 3x = 0 3x(x - 1) = 0 x = 0 (thoả mãn) hoặc x = 1 (loại) Vậy S = 0