Đề kiểm tra học kì 1 Toán Lớp 8 - Đề 51 (Có đáp án)

Bài 4. (3,0 điểm).

Cho hình chữ nhật ABCD. Gọi H là chân đường vuông góc kẻ từ A đến BD. Gọi M và N theo thứ tự là trung điểm của các đoạn AH và DH.

a) Chứng minh MN//AD.

b) Gọi I là trung điểm của cạnh BC. Chứng minh tứ giác BMNI là hình bình hành.

c) Chứng minh tam giác ANI vuông tại N.

docx 4 trang Ánh Mai 10/06/2023 2560
Bạn đang xem tài liệu "Đề kiểm tra học kì 1 Toán Lớp 8 - Đề 51 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docxde_kiem_tra_hoc_ki_1_toan_lop_8_de_51_co_dap_an.docx

Nội dung text: Đề kiểm tra học kì 1 Toán Lớp 8 - Đề 51 (Có đáp án)

  1. ĐỀ 51 ĐỀ KIỂM TRA HỌC KỲ I Môn TOÁN LỚP 8 Thời gian: 90 phút Bài 1. (1,5 điểm) Phân tích đa thức thành nhân tử : a) 5x2 - 10x b) x2 – y2 – 2x + 2y c) 4x2 – 4xy – 8y2 Bài 2: (2,0 điểm) 1. Thực hiện phép tính: a) 5x(3x – 2 ) b) (8x4 y3 – 4x3y2 + x2y2) : 2x2y2 2. Tìm x biết a) x2 – 16 = 0 b) (2x – 3)2 – 4x2 = - 15 Bài 3: (2,5 điểm) 2a2 a a Cho biểu thức: P = a2 1 a 1 a 1 a) Tìm a để biểu thức P có nghĩa. b) Rút gọn P. c) Tìm giá trị nguyên của a để P có giá trị nguyên . Bài 4. (3,0 điểm). Cho hình chữ nhật ABCD. Gọi H là chân đường vuông góc kẻ từ A đến BD. Gọi M và N theo thứ tự là trung điểm của các đoạn AH và DH. a) Chứng minh MN//AD. b) Gọi I là trung điểm của cạnh BC. Chứng minh tứ giác BMNI là hình bình hành. c) Chứng minh tam giác ANI vuông tại N. Bài 5. (1,0 điểm) Cho các số x, y thoả mãn đẳng thức 5x2 5y2 8xy 2x 2y 2 0 . Tính giá trị của biểu thức 2015 2016 2017 M x y x 2 y 1 ĐÁP ÁN BÀI NỘI DUNG ĐIỂM a) 5x2 - 10x = 5x(x – 2) 0,5
  2. b) x2 – y2 – 2x + 2y = (x2 – y2) – (2x - 2y) = (x – y) (x + y) – 2(x – y) 0,25 = (x - y) (x + y – 2) 0,25 c) 4x2 – 4xy – 8y2 = (4x2 – 4xy + y2) – 9y2 1 = (2x – y)2 – (3y)2 = (2x - y - 3y) (2x – y + 3y) 0,25 = (2x - 4y) (2x + 2y) 0,25 = 4(x- 2y) (x + y) 1. a) 5x(3x – 2) = 15x2 - 10x 0,5 1 0,5 b) (8x4 y3 – 4x3y2 + x2y2 ) : 2x2y2 = 4x2y – 2x + 2 2 2. a) x – 16 = 0 x = 4 (0,25 đ) hoặc x = -4 (0,25 đ) 0,5 2 2 2 2 b) (2x – 3) – 4x = - 15 4x – 12x + 9 – 4x = - 15 0,25 2 -12x = -24 x = 2 0,25 2a2 a a P = a2 1 a 1 a 1 a) ĐKXĐ của P là: a 1 0,5 2a2 a(a 1) a(a 1) b) P = (a 1)(a 1) (a 1)(a 1) (a 1)(a 1) 0,25 2a2 a2 a a2 a = a2 1 3 0,25 2a2 2a 2a(a 1) 2a = (a 1)(a 1) (a 1)(a 1) a 1 2a Vập P = a 1 c) Với điều kiện a 1 0,75 2a 2(a 1) 2 2 P = = 2 a 1 a 1 a 1
  3. 2 0,25 P nguyên khi và chỉ khi có giá trị nguyên hay a 1 a + 1 là ước của 2 0,5 Tìm được a = 0, -2 , -3 A B M 0,5 H I 4 N D C a) Xét tam giác AHD có: M là trung điểm của AH (gt) 0,5 N là trung điểm của DH (gt) Do đó MN là đường trung bình của tam giác AHD Suy ra MN//AD (tính chất) (đpcm) 0,25 b) Ta có MN//AD, mà AD//BC (2 cạnh đối hình chữ nhật) nên MN//BC hay MN//BI 0,25 1 Vì MN = AD (tính chất đường trung bình của tam giác) 2 1 và BI = IC = BC (do gt), 2 0,5 mà AD = BC (2 cạnh đối hình chữ nhật) MN = BI BC hay MN//BI Xét tứ giác BMNI có MN//BI, MN = BI (c/m trên) 0,25 Suy ra tứ giác BMNI là hình bình hành (đpcm) c) Ta có MN// AD và AD AB nên MN AB Tam giác ABN có 2 đường cao là AH và NM cắt nhau tại M nên M là 0,25 trực tâm của tam giác ABN. Suy ra BM AN 0,25 mà BM//IN nên AN NI hayV ANI vuông tại N (đpcm)
  4. 0,25 5 Ta có 5x2 + 5y2 + 8xy - 2x + 2y + 2 = 0 0,25 (4x2 + 8xy + 4y2) + ( x2 - 2x + 1) + (y2 + 2y + 1) = 0 0,25 4(x + y)2 + (x – 1)2 + (y + 1)2 = 0 (*) 0,25 Vì 4(x + y)2 0; (x – 1)2 0; (y + 1)2 0 với mọi x, y Nên (*) xẩy ra khi x = 1 và y = -1 0,25 Từ đó tính được M = 1