Đề thi học kì 2 Toán Lớp 8 - Đề 10 (Kèm đáp án)
Bài 3 (1,5 điểm ). Một tàu chở hàng khởi hành từ thành phố Hồ Chí Minh với vận tốc 36km/h. Sau đó 2 giờ một tàu chở khách cũng đi từ đó với vận tốc 48km/h đuổi theo tàu hàng. Hỏi tàu khách đi bao lâu thì gặp tàu hàng ?
Bài 5: (0,5 điểm). Tính thể tích của một hình lăng trụ đứng có đáy là tam giác vuông, chiều cao của lăng trụ là 7cm. Độ dài hai cạnh góc vuông của đáy là 3cm và 4cm.
Bài 5: (0,5 điểm). Tính thể tích của một hình lăng trụ đứng có đáy là tam giác vuông, chiều cao của lăng trụ là 7cm. Độ dài hai cạnh góc vuông của đáy là 3cm và 4cm.
Bạn đang xem tài liệu "Đề thi học kì 2 Toán Lớp 8 - Đề 10 (Kèm đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- de_thi_hoc_ki_2_toan_lop_8_de_10_kem_dap_an.docx
Nội dung text: Đề thi học kì 2 Toán Lớp 8 - Đề 10 (Kèm đáp án)
- ĐỀ 10 ĐỀ THI HỌC KỲ II Môn: Toán Lớp 8 Thời gian: 90 phút Bài 1. ( 1,5 điểm ).Cho biểu thức : 1 2x 1 2 A = . 1 x 2 x 2 4 x 2 x a, Rút gọn biểu thức A. b, Tìm x để A = 1 Bài 2: (2,5 điểm) . Giải các phương trình và bất phương trình sau : 1 2x 1 5x a, |x-9|=2x+5 b, 2 x 4 8 2 3 3x 5 c, x 3 x 3 x2 9 Bài 3 (1,5 điểm ). Một tàu chở hàng khởi hành từ thành phố Hồ Chí Minh với vận tốc 36km/h. Sau đó 2 giờ một tàu chở khách cũng đi từ đó với vận tốc 48km/h đuổi theo tàu hàng. Hỏi tàu khách đi bao lâu thì gặp tàu hàng ? Bài 4: (3 điểm) ) Cho tam giác ABC vuông tại A có AB = 6cm; AC = 8cm. Kẻ đường cao AH. a) Chứng minh ABC HBA b) Tính độ dài các cạnh BC, AH. c) Phân giác của góc ACB cắt AH tại E, cắt AB tại D. Tính tỉ số diện tích của hai tam giác ACD và HCE. Bài 5: (0,5 điểm). Tính thể tích của một hình lăng trụ đứng có đáy là tam giác vuông, chiều cao của lăng trụ là 7cm. Độ dài hai cạnh góc vuông của đáy là 3cm và 4cm. Bài 6 : ( 1 điểm). Cho 3 số thực dương a, b, c thỏa mãn a 2b 3c 20 . Tìm GTNN của 3 9 4 A a b c a 2b c ĐÁP ÁN – THANG ĐIỂM Bài Đáp án Điểm
- 1 1 2x 1 2 a,A = . 1 (1,5đ) x 2 x 2 4 x 2 x ĐKXĐ : x 2 ; x -2 ; x 0 0,25 1 2x 1 2 x 0,25 A = . x 2 x 2 x 2 x 2 x 0,25 x 2 2x x 2 x 2 = . x 2 x 2 x 0,25 4x 1 4 = . = x 2 x x 2 0,25 b, Đk :x 2 ; x -2 ; x 0 0,25 4 A =1 = 1 x+2 = -4 x= -6 ( thỏa mãn điều kiện ) x 2 Vậy x = -6 thì A =1 2 a, ( 0,75 đ) (2,5đ) | x – 9| = 2x + 5 0,25 * Với x ≥ 9 thì |x – 9| = x – 9 ta có PT: x – 9 = 2x + 5 x = - 14 ( loại) * Với x < 9 thì |x – 9| = 9 – x ta có PT: 9 – x = 2x + 5 x = 0,25 4/3(thỏa mãn) Vậy tập nghiệm của PT là S = {4/3} 0,25 1 2x 1 5x b,(0,75 ) 2 x 4 8 2(1 – 2x) – 16 ≤ 1 - 5x + 8x -7x ≤ 15 0,25 x ≥ - 15/7. 0,25 Vậy tập nghiệm của BPT là {x / x ≥ -15/7} 0,25 c,( 1 đ ) ĐKXĐ x ≠ ±3 0,25 2(x + 3) + 3(x – 3) = 3x + 5 0,25 5x – 3 = 3x + 5 x = 4( thỏa mãn ĐKXĐ) 0,25
- Vậy tập nghiệm của PT là S = {4} 0,25 3 Gọi x (giờ) là thời gian tàu khách đi để đuổi kịp tàu hàng (x >0) 0,25 Khi đó tàu khách đã chạy được một quãng đường là 48.x (km) (1,5đ) 0,25 Vì tàu hàng chạy trước tàu khách 2 giờ, nên khi đó tàu khách đã chạy được quãng đường là 36(x+ 2) km. 0,5 Theo đề bài : 48x = 36(x + 2) 48x – 36x = 72 72 0,5 x = 6 (TMĐK) 12 Tàu khách đi được 6 giờ thì đuổi kịp tàu hàng. 4 Vẽ hình chính xác, A (3đ) Ghi được GT, KL. D 0,5 E B C H a) ABC HBA (g.g) 0 vì B· AH=B· HA=90 , Bµ chung. 0,5 b) Ta có: BC2 =AB2 + AC2 BC2 = 100 BC = 10 (cm) 0,5 AC BC Vì ABC HBA (chứng minh trên) => HA AB 0,5 AB.AC 6.8 hay AH 4,8 (cm) BC 10 c) Ta có: HC AC2 AH2 6,4 0,5 ADC HEC (g.g) vì D· AC=E· HC=900 , A· CD=D· CB (CD là phân giác góc ACB) 2 2 SADC AC 8 25 => Vậy = = 0,5 SHEC HC 6,4 16 5 Thể tích của hình lăng trụ đứng tam giác là: 0,5 (0,5đ) 1 V = S.h = .3.4.7 = 42(cm3) 2
- 3a 3 b 9 c 4 a b 3c A 6 4 a 2 2b 4 c 4 2 4 0,25 (1đ) 3a 3 b 9 c 4 a 2b 3c 2 . 2 . 2 . 0.25 4 a 2 2b 4 c 4 3 3 2 5 13 0,25 Dấu “=” xảy ra a 2,b 3,c 4 Vậy GTNN của A là 13 0,25