Đề thi học kì I môn Toán học Lớp 8 - Đề số 2 (Có đáp án)

Bài 1 (1,5 điểm)Phân tích các đa thức sau thành nhân tử: 
a) 3a3b2 15a2b3 
b) 5x2 10x 520y2 
Bài 2 (3 điểm)Thực hiện phép tính: 

Bài 3: 
A  x3 7x 3 x2 cho đa thức B  x 3 . 
b) Gọi Q là thương của phép chia A cho B. Chứng minh Q 3 luôn nhận giá trị dương với mọi x  3. 
Bài 4 (3 điểm)Cho ABC vuông tại A AB  AC . Gọi M,N, K thứ tự là trung điểm của AB,AC và $BC

a) Chứng minh

1
KN  2 AB và ABKN là hình vuông. 
b) Qua M kẻ đường thẳng song song với BN, cắt tia KN tại Q . Chứng minh AKCQ là hình thoi. 
c) MN cắt BQ tại O , AK cắt BN tại I . Biết BC  24cm. Tính độ dài OI 
Bài 5: 
Cho AB= 100 km. Một xe ô tô khởi hành từ B đến A với vận tốc 40km / h . Cùng lúc đó, một xe đạp điện cũng khởi hành từ A 
trên đoạn đường vuông góc với AB với vận tốc 20km / h . Gọi C, D thứ tự là vị trí của xe ô tô và xe đạp điện vào thời điểm 
t(h) sau khi khởi hành. Giả sử vận tốc của hai xe không thay đổi trong quá trình di chuyển. 

pdf 7 trang Ánh Mai 21/03/2023 7460
Bạn đang xem tài liệu "Đề thi học kì I môn Toán học Lớp 8 - Đề số 2 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • pdfde_thi_hoc_ki_i_mon_toan_hoc_lop_8_de_so_2_co_dap_an.pdf

Nội dung text: Đề thi học kì I môn Toán học Lớp 8 - Đề số 2 (Có đáp án)

  1. c ĐỀ THI HỌC KÌ I: ĐỀ SỐ 2 MÔN: TOÁN - LỚP 8 Đề bài Bài 1 (1,5 điểm)Phân tích các đa thức sau thành nhân tử: aabab)3153223 bxxy)51052022 Bài 2 (3 điểm)Thực hiện phép tính: a) xxxx 364 538xx b) xx 11 2 c) xxx 42533 2x 1 2 x 5 2 x2 x 3 d) x4 x 3 3 x 4 x2 Bài 3: Axxx 3273 cho đa thức Bx 3 . b) Gọi Q là thương của phép chia A cho B. Chứng minh Q 3 luôn nhận giá trị dương với mọi x 3. Bài 4 (3 điểm)Cho ABC vuông tại A AB AC . Gọi M N,, K thứ tự là trung điểm của A B, A C và $BC 1 a) Chứng minh KNAB và ABKN là hình vuông. 2 b) Qua M kẻ đường thẳng song song với BN, cắt tia KN tại Q . Chứng minh AKCQ là hình thoi. c) MN cắt BQ tại O , AK cắt BN tại I . Biết BCcm 24 . Tính độ dài OI Bài 5: Cho AB= 100 km. Một xe ô tô khởi hành từ B đến A với vận tốc 40km / h . Cùng lúc đó, một xe đạp điện cũng khởi hành từ A trên đoạn đường vuông góc với AB với vận tốc 20km / h . Gọi C, D thứ tự là vị trí của xe ô tô và xe đạp điện vào thời điểm t(h) sau khi khởi hành. Giả sử vận tốc của hai xe không thay đổi trong quá trình di chuyển.
  2. a)Viết biểu thức đại số biểu diễn độ dài A C A,D theo t . b)Hỏi sau bao lâu (tính từ lúc khởi hành) khoảng cách CD là ngắn nhất? Giải thích. LG bài 1 Giải chi tiết: a) 31535abababab322322 b) 510520xxy22 5214 xxy22 22 512 xy 51212 xyxy LG bài 2 Giải chi tiết: a) x 3 x 6 x 4 x c) x 4 2 25 3 x 3 x x22 6 x 3 x 18 4 x x x22 8 x 16 25 9 x 5x 18. 8.x 5xx 3 8 b) DK : x 1 xx 11 5xx 3 8 x 1 88x x 1 81 x 8. x 1
  3. 2125233xxxx 2 dDkxx):0, 2 xxxx 43344 21342523xxxxxx 2 xx 34 68342523xxxxxxx 222 xx 34 8x6x2 x34x 243xx 2 xx 34 LG bài 3 Giải chi tiết: a)Thực hiện phép chia đa thức Axxx 3273 cho đa thức Bx 3 . b)Ta có: QxQxxxx 222 2x1321 322 2 Qxxx 2 21111. 22 Vì xxxxQx 101103303.    LG bài 4 Giải chi tiết:
  4. a) Vì NK, lần lượt là trung điểm của $AC$ và $BC ()gt \Rightarrow NK$là đường trung bình của A C B (dấu hiệu nhận biết đường trung bình của tam giác) AB NK * 2 (tính chất đường trung bình của tam giác) NK// AB
  5. LG bài 5 Giải chi tiết: Bài 5. a)Quãng đường BC mà ô tô đi được trong thời gian t giờ là: 40t (km) Vậy độ dài của quãng đường AC là: 100 40t km Quãng đường AD mà xe đạp điện đi được trong thời gian t giờ là: 20t km b)Áp dụng định lí Py-ta-go cho tam giác ADC vuông tại A ta có:
  6. DCtt 10040400 2 2 1000080001600400ttt 22 2000800010000tt2 20545.tt2 Để độ dài đoạn DC ngắn nhất thì tt2 45 đạt giá trị nhỏ nhất. Ta có : 2 t2 4 t 5 t 2 1 1  t nên DC đạt giá trị nhỏ nhất tt202. Vậy sau khi 2 xe khởi hành được 2 giờ thì khoảng cách CD ngắn nhất.